
webtool.one

webtool.one

Backgammon Classic: Moves Calculation Logic

webtool.one

Source files

File name Description

main.js Initiation of board instance with respective parameters (see reference below).

board.js
Board class lives here. It contains logic for instantiating the board and producing the final
output.

piece.js The Piece class. Added to Board prototype.

position.js The Position class. Added to Board prototype.

logic.js
The core for calculation. Includes main function defMoves and others. Added to Board
prototype.

logger.js
Simple logger based on console.log . May be used as a starting point to include a full-
featured logger.

helpers.js Helper functions to perform actions on objects, arrays, etc.

Other files

File Description

calc.js File for demo. It may be used as an example of requiring calculation.

test.js File for testing purposes.

Usage

In general, you need only to require main.js which provides a function for calculation. Then provide gid , state ,
and params to get a result. Please see for example calc.js (used for demo).

Basic example

/* Create function to get output */

const Board = require('./board')

const boardState = async (gid, state, params) => {
 const board = new Board(gid, state, params)
 await board.defMoves()
 return board.output
})

/* OR simply require main.js */
const boardState = require('<path to main.js>')

/* Get actual state and send it to client */
const result = boardState(gid, state, params)

// ... do something with `result` ...

1/4

https://webtool.one/

webtool.one

webtool.one

Position numbers

Note that position numbers here are used for calculation purposes only: the start is #1 and the end is #24. Blacks'
drop-zone is #0 and whites' drop-zone is #25. If desired, these position numbers may be changed/converted
after obtaining board output. If so, input to calculation should be re-converted too (pieces only).

Classes (prototypes)

Board

This is a core for calculation. The instance of the Board class is instantiated per request. It allows providing a
state for each calculation making whole calculation process versatile. Also, due to the Board being stateless, it
does calculations according to the provided state and parameters. For example, a state can be retrieved from a
database in case of accidental disconnection.

In the normal way, the state should be seen as a snapshot of the board on client side and client-server
communication can be as follows:

�. Client receives initial board state, i. e. all pieces are on respective heads. To obtain such initial state
instantiate Board with no dice points;

�. A user does some moves: the modified state is sent for calculation;

�. The new Board instance is instantiated on the server with the actual state and calculations are performed;

�. A client receives an updated state with data on pieces and moves.

If no dice points are provided, heads will be set, i. e. all white pieces will be on position #1, and all black pieces will
be on position #13 (for white color player view).
To get calculation results, use Board.output getter, which has the following properties:

Property Type Description

activeUID
String |

Number
Used ID that has rights to do a move, i.e. user which has rolled dice.

hasMovable Boolean Designates whether there are any movable pieces.

pieces See below
Pieces, i. e. board state, for each player. Positions are properly set
according to each player's color.

Board output respects the view of each player and is suitable for immediate display. It means, for instance, that a
white color player will see the 'home' of a black player as positions starting at #7 and a black color player will see
his own 'home' starting at position #19.

Board.output.pieces
The structure of pieces exposed to output is as follows:

{
 '<user id #1>': { /* This is sutable for user #1 UI display. */
 self: Object{ '<piece ID>': Piece },
 opp: Object{ '<piece ID>': Piece } /* user #1 opponent's pieces */
 },

 '<user id #2>': { /* This is sutable for user #2 UI display. */
 self: Object{ '<piece ID>': Piece },
 opp: Object{ '<piece ID>': Piece } /* user #2 opponent's pieces */
 }
}

2/4

webtool.one

webtool.one

In Board.output.pieces object there are two representations of board layout, i.e. for each player. Each player piece
layout respects the corresponding view: for a white color player the 'head' is on the top-right board section and
the 'home' is on the bottom-right board section. At the same time, the black color player will see, for example, the
white color player's 'home' at the top-left board section. So board layout is reversed for each player's view.

Piece

Class to work with pieces. The Piece instance is exposed in board output, so can be used for UI purposes. It has
the following properties exposed to Board.output :

Property Type Description

gid
String |

Number
ID of game.

uid Number ID of the user this piece belongs to.

pid Number ID of this piece. Useful for positioning within client UI.

color Number Color of piece: 0 for white and 1 for black.

posN Number Actual piece position.

iPosN Number

Initial piece position. As a player can do more than one move after the
dice roll, this property keeps the starting point of movements and is
used to undo moves.

index Number

As on one position can be several pieces, there can be a 'column' of
pieces. The index shows the exact place of this particular piece
concerning the order in 'column'. It's also is used to undo moves: the
piece's place will be reverted to the highest position in the 'column'.

posToMove Array<Number>

Array of position numbers this piece can be moved to. It includes
piece's current position number: user may take and move piece
around but finally place it at initial position (actual move has not been
done).

movements Array<Number> Position numbers this piece has been moved to on previous steps.

movable Boolean
Whether this piece is movable. In case there are several pieces on one
position, only piece on top of such 'column' is movable.

droppedOut Boolean Whether this piece is dropped out.

Position

Class for representing a particular board position. Used for internal purposes only. For more information see
source: position.js .

Parameters for calculation

These parameters are passed to the main function (which initializes Board and returns output, i. e. main.js) to
produce a result. For usage examples please see calc.js and test.js . A general description is provided below.

gid
Type: String | Number

ID of in-progress game. Can be used to identify the current game and/or retrieve data from database to restore
the game state.

3/4

webtool.one

webtool.one

state
Type: Object

Includes all information about actual game state which will be used for calculation.

Property Type Description

pieces Array<Piece> Array of pieces with actual position, done moves, etc.

colors

Object{ <user

id>: <color: 0

| 1> }

Colors of each player mapped to their IDs: 0 = white, 1 = black, e. g. {
1000: 0, 1001: 1 } ,

dicePoints Array<Number>

Dice points, e. g. [2, 5] . If no dice points are provided, heads will be
set. Dice points should be passed 'as is', because done moves are
retrieved from every Piece (Piece.movements).

status String
Status of game, e. g. 'in-progress'. Optional, not in use. May be useful
for tracking game progress.

activeUID Number User ID moves are calculated for.

params
Type: Object

All parameters are optional and defaults to false .

Property Type Description

undo Boolean Whether this is an undo action: pieces will be reverted to their initial positions.

fixed Boolean
Discard all previous movements, i. e. each piece current position will be set as
initial.

outOnly Boolean
Don't do any calculations (even don't discard movements), return pieces 'as is'.
Useful to restore game state.

Please see the source files for additional information.

Web version

Demo

4/4

https://webtool.one/en/backgammon-logic/docs
https://webtool.one/en/backgammon-logic

