
webtool.one

webtool.one

Date Picker

webtool.one

Source files

File name Description

main.js DTPicker prototype. This file should be used to import picker.

options.js Options for picker, incl. params for internal use.

dt-picker.vue The main Vue component.

src/_state.js WebAssembly operations.

src/accessors.js DTPicker prototype accessors.

src/actions.js Action methods: clear, confirm, etc.

src/attrs.js Getter for HTML attributes.

src/constants.js Operations to set constant values.

src/events.js Event functionality.

src/init-check.js Some checks are performed on DTPicker initialization phase.

src/observers.js Observers to react to HTML updates.

src/ops.js Internal operations.

src/validate-obj.js Helper function to perform initial checks.

src/helpers.js Helper functions.

src/vue-directives.js Vue directives.

src/svghtml.vue Vue component for SVG rendering.

src/dt-controls-block-icon.vue Vue component for picker's controls icons.

src/dt-level.vue Vue component for date level.

src/dt-selected-block.vue Vue component for selected block.

src/dt-selected.vue Vue component for rendering selected date(s).

In addition, there are icons , css , and wasm directories for icons, styles, and compiled WebAssembly,
respectively.

Usage

To use the picker, you need a 1) reactive presentation HTML layer and 2) initialized DTPicker instance for
operations.

With Vue implementation:

1/10

https://webtool.one/

webtool.one

webtool.one

<template>

 <!-- NOTE: update model on event `update:model`, v-model will not work! -->

 <DatePicker v-bind='props' model='model = $event' />
</template>

<script setup>

 import { ref } from 'vue'

 import DatePicker from 'date-picker/js/dt-picker.vue'

 const initial = { years: [], months: [], days: [] }

 /* Options */

 const props = ref({ model: initial, /* ... options ... */ })

 /* Model with initial values */

 const model = ref(initial)

 /* ... do something with model ... */

</script>

With other framework or plain HTML/JavaScript:

import DTPicker from 'date-picker/main'

/* Create state object.

 Reference to it shoud be passed to DTPicker constructor.

 It is updated after each picker operation.

 Object properties depend on your approach,

 see `date-picker/dt-picker.vue for details`

*/

const state = { ... }

const options = { ... }

/* Instantiate DTPicker instance: pass options and reference to state. */

const picker = new DTPicker(options, state)

/* ... react to `state` changes and update HTML ... */

Please see additional information below.

Architecture

Isolated logic

This functionality is made to be almost framework/presentation layer agnostic. This means that all logic is
independent of HTML rendering, which includes the following features:

HTML attributes (dynamic element classes, IDs, HTML Symbols, etc.) are separated from the presentation
layer and provided to it on each update (when DTPicker state changes);

To react to HTML updates standard JavaScript Observer API is used;

To update the presentation layer after respective state changes, the special method DTPicker.update is
used. After all, such an approach gives strict control over when display layer update should be performed
theoretically providing more performant execution (touch HTML only when all necessary operations are
done). Also, the resulting code should be less error-prone;

Code is divided into separate blocks: WebAssembly operations, HTML attributes, constants, actions, text, etc.

Due to these points to use DTPicker in any project you need to:

@update:

2/10

webtool.one

webtool.one

1. Create a presentation, i. e. HTML, layer: it can be any reactive JavaScript framework or even plain HTML with
vanilla JavaScript;

2. Connect presentation layer with logic, i. e. pass state to instantiated DTPicker instance and update HTML
according to received result.

If you don't mind using Vue.js, it's already implemented for the presentation layer and picker is ready for
immediate usage.

If you're adapting the presentation layer for some particular framework, please check .vue template files to
create proper HTML elements.

Parameters for internal use, i. e. directly in the logic, are separated for convenience: check it also for satisfactory
values.

For the styling guide please see the appropriate section of this docs. Please be aware that in HTML there are
some elements (not so much so far) that have hard-coded attributes: these should be consistent with styles and
DTPicker.attrs getter (source file src/attrs.js).

HTML elements

In general, HTML elements are intended for internal use only. However, in case you need them, all HTML elements
are accessible via DTPicker.refs.<element name> , e. g. DTPicker.refs.root . For reference please see source files.
Also please note, that some of these DTPicker.refs might be refreshed after the picker gets updated.

Classes (prototypes)

DTPicker

In Vue.js implementation it's directly accessible from outside the picker as component ref , e. g. in your
component use: <imported picker component name>.value.picker . The picker instance is exposed via
defineExpose , so to access the picker instance you need to get the component containing it first.

To use DTPicker as a standalone object you need to instantiate it and provide proper HTML for the representation
layer. The most obvious way to do it is to port HTML from the Vue component, i. e. dt-picker.vue .

Please refer to the source files for details.

WebAssembly

The early version of DTPicker was implemented with the Day.js library, but after some testing timing results were
not very good: changing date took about 40-70 ms (many optimizations, incl. caching, were tried out). Although
it's not so awful, finally WebAssembly was used to obtain more performant operations. And now, in the current
version timings are more promising: changing date takes only about 2-7 ms.

Date selection

Selection logic

Picker allows us to select all, several, or any date level, i. e. we can select only year, only day, year-month, month-
day, etc. Such an approach makes possible usage of picker as, for instance, filtering form field: we will have the
ability to filter data by only one date level (for example, we can filter data only by year if month and day aren't of
interest for us).

Due to the number of days in months having a variance, displayed day numbers depend on the selected month (in
the case of February, a year also matters, because there can be a leap year). If no month is selected, the days'
level will display 31 items to give us ability to select any day number.

3/10

webtool.one

webtool.one

In case the newly selected month doesn't have an already selected day number, the latter will be unselected. For
example, if we select day #31 and then select November, then the day will be unselected because there are only
30 days in November.

This logic also applies to years: for instance, if we select February 29 and the leap year, all will be fine. But, if we
change the year to a non-leap year, we will have no selected day and number of days equal to 28.

When clicking on the already selected item, this item will be unselected.

Modes

There are two modes to select dates:

1. Normal: only one full date or any one level of date;

2. Edges: full start and end dates or any date level of start and end.

All modes allow to select any or all date levels, e. g. only years or only months can be selected.

To enable edges mode supply as initial model two values instead of one, e. g. years = [2020,2021] . The active
(available for selection) edge is set to 0 by default, i. e. start date. But if the initial value only at index 1 is null or
undefined the active edge will be set to 1, i. e. end date.

To sum it up:

1. If no mode is designated in options and there are no initial values or only one value for each date level
present, it will be 'normal' mode. Example of initial values: { years: [2020], months: [], days: [11] } ;

2. If no mode is designated in options and any of initial date levels has 2 values, the initial mode will be edges.
In such case, when any of the date levels has null or undefined at index 1, then the edge will be set to 1 (end
date), otherwise - to 0 (start date). Example of initial values: { years: [2020, 2022], months: [10], days: [11,
null] } ;

3. If mode is designated in options then it will be used with one exception: two initial values in any date level will
result in edges mode in any case.

If you want the initial mode to be edges, set option mode = 'edges' . Note that in this case, all date levels must
have at most 2 values. If you need to set an empty level for any edge, set it to null , e. g. { years: [2020, 2025],
months: [null, 10], days: [] } . If the initial start date is full and the initial end date isn't full, then the active edge
will be switched to the end date.

Active mode can be changed at any moment by clicking on the settings button.

Actions

Picker has the following actions:

1. Clear. Remove any selected values;

2. Revert. Set selected values to the initial state. This works only if there were initial values on picker
initialization;

3. Confirm. Convenient action to emit special event to confirm selection is done. May be useful for form
confirmation;

There are two not-so-obvious actions:

1. Blocking entire picker: activated on setting options.blocked to true in case of component reactivity (for
example, when Vue component is used). Can be invoked directly with respective methods, i. e.
DTPicker.block() and DTPicker.unblock() ;

2. Setting stub: activated when no start and/or end date is provided. May be useful to use stub when loading
data. Also, stub can be get/set on-demand via Boolean getter/setter DTPicker.stub .

Options

4/10

webtool.one

webtool.one

To be initialized, the picker needs minimum (start) and maximum (end) dates to set the range for selection:

options.minDT = Number | String

options.maxDT = Number | String

Examples: 2020 (Number) | '2020-01-05' (String) | '2020' (String)

These options are needed to retrieve year only, so the provided string will be parsed for a 4-digit number. In the
case of number, it will be used as is. The start and end dates will be respective start-end of provided years, e. g.
start date '2020-01-05' will be converted to 2020-01-01 . Only 4-digit years are expected.

If no start and end dates are provided, a stub will be used instead of picker.

To ensure proper initial values and parameters, some checks are performed on the picker initialization phase.

5/10

webtool.one

webtool.one

Option Type Default Description

model

Object{ years:

Array<Number>,

month:

Array<Number>,

days:

Array<Number>

}

{ years: [],

months: [],

days: [] }

Initial selected values.

minDT
Number |

String
null Start year.

maxDT
Number |

String
null End year.

id String 'date-picker' ID of DTPicker .

blocked Boolean false
Whether to block (disable) entire
component.

locale String 'en'

Locale: 'ru' or 'en' . To add more locales
add respective texts to params in
options.js .

monthNames
String: 'name'

| 'number'
'name' How to display months: name or number.

monthNums Boolean true
Whether to display month nums. Implicitly
disabled if monthNames = 'number' .

clean Boolean true

Whether to clean output model, i. e. remove
any empty (null) values. Most useful for
edges mode, e. g. years: [2020,
null] or [2020] .

mode String null

'normal' | null | undefined : single date
or 'normal', e. g. { years: [2020], months:
[2], days: [1] } (2020-02-01),
'edges' : interval - , e. g. { years: [2020,
2022], months: [1, 2], days: [10, 22]

} (2020-01-10 <-> 2022-02-22).

changeQ

Object{ years:

Number, month:

Number, days:

Number }

{ years: 2,

months: 2,

days: 2 }

In case of level overflow amount of items to
be moved on navigation.

showModeIcons Boolean true
Whether to show mode icon in selected
area.

windowResize Boolean false
Whether to resize picker on window resize
event.

blockedCSSfilter String
'opacity(.5)

saturate(10%)'
CSS filter property for blocked picker.

navAnimation Object

{ duration:

100, easing:

'ease-out' }

Animation of moving level on navigation.

blockAnimation Object

{ duration:

100, easing:

'ease-out' }

Animation for picker blocking.

6/10

webtool.one

webtool.one

Option Type Default Description

resizeAnimation Object

{ duration:

100, easing:

'ease-out' }

Fade animation for correction operations
after resize. A one half of full cycle, i. e. in
and out.

levelAnimation Object

{ duration:

100, easing:

'ease-out' }

Animation of correcting level width when
picker was resized or days Qty changed.

All animation options comply with the Web Animation API.

In addition, there are some options for internal use. Please see source file options.js for details.

Events

The following events are intended for the usage from outside of picker instance. For internal events' details
please see source files.

Emits

All events have names constructed from picker ID plus event name: <picker id>:<event name> .

Event name Description Payload

confirm
Emitted when confirming selected
data.

Selected data, picker ID, mode in use.

update:model Emitted when selected data changes. Selected data, picker ID, mode in use.

compact
Emitted when compact mode has been
changed.

Boolean indicating whether compact mode
is enabled.

You can add all emits you need by using DTPicker.emit method. Please refer to source files, especially
src/events.js , for details.

Listeners

Only <picker id>:resize event is listened by picker root element.

Adaptability

Triggering resizing

The picker can adapt to the parent element width. Once such a change happens, the picker will recalculate its
dimensions and add or remove navigation (previous and next arrows) for each date level, if necessary.

There are two ways to get the picker auto-correcting its dimensions:

1. Set windowResize = true option. The resize will be triggered on window resize event;

2. Disable resizing on window event (windowResize = false) and trigger resize on-demand. This is
accomplished by dispatching event <picker id>:resize on picker root element which is accessible on
DTPicker instance (DTPicker.refs.root).

For example, for Vue.js it can be done with onMounted hook:

7/10

webtool.one

webtool.one

<template>

 <DTPicker v-bind='pickerOptions' ref='picker'>

</template>

<script setup>

import { ref, onMounted } from 'vue'

import DTPicker from './dt-picker.vue'

const picker = ref(null)

const pickerOptions = {

 windowResize: false, /* This is a default */

 id: 'picker-id',

 /* ... other options ... */

}

onMounted(_ => {

 /* Here we use #content as an element with width transition.
 It contains the picker element.

 */

 const content = document.getElementById('content')

 content.ontransitionend = e => {

 /* Check it's a width transition on `content` */

 if (e.target == content && e.propertyName == 'width')

 picker.value.picker.refs.root.dispatchEvent(new Event('picker-id:resize'))

 }

})

</script>

IMPORTANT: if any parent element has width transition/animation, <picker-id>:resize event must be
dispatched at the end of this transition/animation with picker's option windowResize = false . Otherwise, the
picker may attempt to correct dimensions before the parent transition/animation ends and wrong dimensions
may be set.

In general, windowResize option should be used only when you need to resize the picker exactly on the window
resize event and when there is no transition/animation on parent element. For full control of picker resize it's
recommended to use <picker-id>:resize event only.

Compact mode

Compact mode is auto-enabled when there is no space for a full-sized picker. Set parent element dimensions to
get the picker in compact mode.

In general, control of resizing and compact mode is done by <picker-id>:resize event. If you change the parent
element width programmatically, emit this event to trigger picker auto-resizing.

When auto-correcting its dimensions, the picker also sets property designating whether a compact mode is
enabled: DTPicker.compact and, if compact mode has been changed, emits event <picker-id>:compact with
respective payload (true or false).

For reference: in the current implementation compact mode will be enabled when the picker's parent element
width will be less than ~37em.

A note on setting stub in compact mode: stub for this mode needs to take into account additional top layer for
selected values, i. e. picker needs to be aware whether this is a compact mode or not. If no min-max dates are
provided in options, the picker can't determine whether should it use compact mode or not, so sets a regular stub
intended for a full-sized picker. Alternatively, when min-max values are present, it is clear what size mode is in
use, so the picker sets appropriate stubs for compact and full-sized modes.

Styling

8/10

webtool.one

webtool.one

Styling is done with beautiful CSS preprocessor Stylus. So you need to use it too in case comprehensive control is
needed. Otherwise, simply import precompiled CSS from date-picker/css/date-picker.css but be aware that in
this case picker will use default values for all its instances.

When using Stylus, to overwrite some or all of the theme variables, import main and size themes as follows (there
may be more than one picker instance on one page):

/* Theme ID must be set in case of several picker elements. */

DTPickerID = 'picker-id'

/* import main theme to set or overwrite all to defaults. */

@import 'date-picker/css/src/theme-main'

/* Overwrite non-size variables: colors, etc. */

color1 = yellowgreen

/* Import size theme to set or overwrite all variables to defaults. */

@import 'date-picker/css/src/theme-size'

/* Overwrite size variables. For relative font units `rem` is recomended. */

fontSize = 15px

/* import styles to be overwritten. */

@import 'date-picker/css/src/main'

@import 'date-picker/css/src/size'

Using media queries:

DTPickerID = 'picker-id'

@import 'date-picker/css/src/theme-main'

@import 'date-picker/css/src/theme-size'

/* Change sizes for viewport width <= 500px */

@media (max-width: 500px)

 DTPickerID = 'picker-id' /* Specify picker ID. */

 fontSize = 12px /* Set variables. */

 @import 'date-picker/css/src/size' /* Import size styles. */

Some styles are set using animations and cannot be changed by directly applying CSS (for example, a CSS
filter for a blocked picker).

When using Vue and applying its transition build-in component, it may not work as expected due to the self-
updating nature of DTPicker.attrs . In such cases wrap the picker component in div and apply transition on it,
like so:

<template>

 <transition name='fade' mode='out-in'>

 <div class='slider-wrapper' :key='pickerKey'>

 <DTPicker v-bind='options' model='model = $event' />

 </div>

 </transition>

</template>

<script setup>

 import { computed } from 'vue'

 /* ... some code ... */

 const pickerKey = computed(_ => ...)

 /* ... some code ... */

</script>

All icons live in the icons directory. To change existing ones, simply replace icon files.

@update:

9/10

webtool.one

webtool.one

Web version

Demo

10/10

https://webtool.one/en/date-picker/docs
https://webtool.one/en/date-picker

