
webtool.one

webtool.one

Num Slider

webtool.one

Source files

File name Description

main.js
The component core, it contains the NumSlider class. It should be used to import
and use a slider.

options.js Options. It also includes parameters for internal use. Use it for parameter reference.

num-slider.vue Vue component. It can be used directly in the Vue environment.

src/accessors.js Getters and setters.

src/actions.js Actions, e. g. moving, blocking, etc.

src/attrs.js Getter NumSlider.attrs : it returns HTML attributes.

src/constants.js Constants for calculating dimensions, SVG coordinates, etc.

src/events.js Event functionality.

src/helpers.js Helper functions.

src/init-check.js Initial checks.

src/ops.js Operations, e. g. setting nums, validation, etc.

src/validate-

obj.js
Helpers for validating objects.

src/svghtml.vue Vue component for icon rendering.

src/vue-

directives.js
Vue directives.

Architecture

Isolated logic

This functionality is made to be almost framework/presentation layer agnostic. This means that all logic is
independent of HTML rendering, which includes the following features:

HTML attributes (dynamic element classes, IDs, HTML Symbols, etc.) are separated from the presentation
layer and provided to it on each update (when NumSlider state changes);

To react to HTML updates standard JavaScript Observer API is used;

To update the presentation layer after respective state changes, the special method NumSlider.update is
used. After all, such an approach gives strict control over when display layer update should be performed
theoretically providing more performant execution (touch HTML only when all necessary operations are
done). Also, the resulting code should be less error-prone;

Code is divided into separate blocks: operations, HTML attributes, constants, actions, etc.

Due to these points to use the slider in any project you need to:

1/7

https://webtool.one/

webtool.one

webtool.one

1. Create a presentation, i. e. HTML, layer: it can be any reactive JavaScript framework or even plain HTML with
vanilla JavaScript;

2. Connect presentation layer with logic, i. e. pass state to instantiated NumSlider instance and update HTML
according to received result.

If you don't mind using Vue.js, it's already implemented for the presentation layer and slider is ready for
immediate usage.

If you're adapting the presentation layer for some particular framework, please check .vue template files to
create proper HTML elements.

Parameters for internal use, i. e. directly in the logic, are separated for convenience: check it also for satisfactory
values.

For the styling guide please see the appropriate section of this docs. Please be aware that in HTML there are
some elements (not so much so far) that have hard-coded attributes: these should be consistent with styles and
NumSlider.attrs getter (source file src/attrs.js).

HTML elements

In general, HTML elements are intended for internal use only. However, in case you need them, all HTML elements
are accessible via NumSlider.refs.<element name> , e. g. DTPicker.refs.root . For reference please see source
files. Also please note, that some of these DTPicker.refs might be refreshed after the slider gets updated.

Classes (prototypes)

NumSlider

In Vue.js implementation it's directly accessible from outside the slider as component ref , e. g. in your
component use: <imported slider component name>.value.slider . The slider instance is exposed via
defineExpose , so to access the slider instance you need to get the component containing it first.

To use NumSlider as a standalone object you need to instantiate it and provide proper HTML for the
representation layer. The most obvious way to do it is to port HTML from the Vue component, i. e. num-slider.vue .

Please refer to the source files for details.

Usage

Slider can be used in 2 ways:

1. As a Vue component;

2. As a standalone functionality.

To use slider as a Vue component:

2/7

webtool.one

webtool.one

<template>

 <!-- NOTE: update model on event `update:model`, v-model will not work! -->

 <NumSlider v-bind='options' model='model = $event' />

</template>

<script setup>

import { ref } from 'vue'

import NumSlider from 'num-slider/js/num-slider'

/* Options */

const options = ref({

 id: 'slider-id',

 minMax: [0, 100],

 model: [10, 40] /* Initial data */

 /* ... other options ... */

})

 /* Data with initial values, will be updated. */

const model = ref([10, 40])

/* ... do something with `model` ... */

</script>

To use slider as a standalone functionality:

import NumSlider from 'num-slider/main'

/* Create state object.

 Reference to it shoud be passed to NumSlider constructor.

 It is updated after each slider operation.

 Object properties depend on your approach,

 see `num-slider/num-slider.vue for details`

*/

const state = { ... }

const options = { ... }

/* Instantiate NumSlider instance: pass options and reference to state. */

const slider = new NumSlider(options, state)

/* ... react to `state` changes and update HTML ... */

Please note that to use the slider as a standalone functionality, you need to implement a presentation layer
(HTML) for it. See Vue component num-slider.vue for example.

Options

@update:

3/7

webtool.one

webtool.one

Option Type Default Description

minMax Array null
Min and max of slider range. REQUIRED. If not
provided, stub will be used.

model
Number

| Array
null

Data model of slider values. REQUIRED. If not
provided, stub will be used.

id String
'num-

slider'
ID of container.

blocked Boolean false Whether to block (disable) entire component.

blockElement

Element

|

Document

| Window

null
If slider's SVG will intersect this element box, then
component will be blocked.

vertical Boolean false Whether to use vertical alignment.

step Number 1 Step to change values.

numAxisScale Boolean true
Whether to scale nums display, i. e. 1 thousand ->
1K, 1 million -> 1M.

inputsOnTop Boolean true
Whether to display inputs & control icons on top
(on right for vertical orientation).

numsOnTop Boolean false
Whether to display slider nums on top. If vertical,
on right.

displayInputs Boolean true Whether to display inputs.

barControls Boolean true Whether to display slider controls, i. e. circles.

disableFormInputs

Boolean

|

Function

false
Whether to disable form inputs. Function: format
selected number, implies disabled inputs.

displayControlIcons Boolean true Whether to display arrows 'to-start' and 'to-end'.

useRevert Boolean true Whether to use revert functionality.

numsInterval

Number |

Array |

Boolean |

Function

true

The number of steps between nums displayed. 0 |
null | false -> don't display. Array -> points to
display. Function: use function w/ signature
(<min>, <max>, <step>) . true -> auto.

ticksInterval

Number |

Array |

Boolean |

Function

true Analogous to numsInterval .

formatNum Function null
Function to format displayed number, one
argument - number to be formatted.

forceShowEdgeTicks Boolean false
In some cases due to interval start or end ticks
may be omitted. Whether to force display of them.

forceShowEdgeNums Boolean false Analogous to forceShowEdgeTicks .

stickyMode Boolean true
Whether to animate control(s) auto-move to step
point.

clickMode Boolean true Whether to set value on click on bar.

4/7

webtool.one

webtool.one

Option Type Default Description

clickModeSVG Boolean true
Whether to set value on click on entire SVG
element. It has no effect if clickMode = false .

animation Object

{

duration:

250,

easing:

'ease-

out' }

Slide animation on number input or click on bar.

animationStick Object

{

duration:

50,

easing:

'ease-

out' }

Animation of sticking to valid number in case
mouse button released on step span.

inputUpdateDelayMS Number 400 Delay of updating slider after number input.

paramsSVG Object {} Params for SVG. See below.

All animation options comply with the Web Animation API.

SVG parameters

All parameters are numbers with one exception: alignEdgeNums is Boolean. For particular values please see file
options.js .

Option Description

viewBox SVG viewBox attribute.

barShift Additional shift of slider bar. Relative to viewBox[3] (viewBox[2] if vertical).

lineWeightK The line thickness. Relative to viewBox height (width if vertical).

lineRk Bar line round corners factor. Relative to bar line weight.

controlRk Control radius factor. Relative to bar line weight.

tickWeightK Tick height factor. Relative to bar line weight.

ticksShift
Ticks shift along Y axis (X if vertical). Relative to bar line weight and bar line weight
center.

numOffset Number offset. Relative to bar line weight.

numSizeK Number size factor. Relative to bar line weight.

numScalePadK Margin of scale text (e. g. K for thousand). Relative to numSize .

controlStrokeK Control stroke width factor. Relative to control Diameter.

alignEdgeNums Whether to align start and end nums to the slider edge instead of tick.

Please note that some options depend on each other, so changing one parameter might require changing the
other. For example, slider controls (circles) might be enlarged to the point when overlapping numbers.
Consequently, when setting any parameter, please ensure that all sizes are properly balanced.

In addition, there are some options for internal use. Please see source file options.js for details.

5/7

webtool.one

webtool.one

Actions

Besides the core actions (values selection), the are additional ones:

1. Blocking. Component will be blocked when option blocked is set to true . Additionally, blocking and
unblocking can be done via calling respective methods: NumSlider.block() and NumSlider.unblock() .

2. Setting stub. Stub will be set when no required options (minMax and model) are provided. In other cases
stub can be set/removed via setter/getter NumSlider.stub .

Blocking on changing visibility

When only a part of or entire slider is not visible, there is no sense to maintain its activity. So in such cases, a
slider will be blocked. The main reason for such invisibility is scrolling, so the element on which the scroll event
slider will check its visibility should be set via the option blockElement . If no element is provided, then the window
object will be used.

Setting stub on initial state

When the stub is set on the initial state then it will always display only one input (if option displayInputs = true)
because there is no knowledge about whether this is a range or not. Consequently, if we have data in the
component, then the stub will respect it and will display the proper number of inputs.

A note on SVG coordinates

The slider should be aware of proper screen coordinates to perform sliding and other actions. For this reason, any
changes in page layout or sizes might lead to the wrong positioning of SVG points (viewBox).

To cope with such situations, the SVG coordinates matrix (SVGMatrix or DOMMatrix) gets updated when clicking
on the slider control or a control starts moving. However, there is a chance that for some edge cases this will be
not enough. So if you have some problems with SVG positioning, please ensure the SVG matrix is properly set.
This can be done via NumSlider.CTM property, i. e. refresh it when needed: <instance>.CTM =
<instance>.refs.svg.getScreenCTM() .

Events

Emits

All events have names constructed from slider ID plus event name: <slider id>:<event name> .

Event name Description Payload

update:model Emitted when selected data changes. Selected data.

Listeners

All listeners are intended for internal use only. Please refer to source files, especially, src/events.js , for details.

Styling

Styling is done with beautiful CSS preprocessor Stylus. So you need to use it too in case comprehensive control is
needed. Otherwise, simply import precompiled CSS from num-slider/css/num-slider.css but be aware that in this
case picker will use default CSS values for all its instances.

6/7

webtool.one

webtool.one

When using Stylus, to overwrite some or all of the theme variables, import main theme and styles as follows
(there may be more than one slider instance on one page):

/* Theme ID must be set in case of several slider elements. */

NumSliderID = 'slider-id'

/* import main theme to set or overwrite all variables to defaults. */

@import 'num-slider/css/src/theme'

/* Overwrite variables: colors, etc. */

colorNumSliderFG = yellowgreen

/* import styles to be overwritten. */

@import 'num-slider/css/src/main'

Using media queries:

NumSliderID = 'slider-id'

@import 'num-slider/css/src/theme'

@import 'num-slider/css/src/main'

/* Change sizes for viewport width <= 500px */

@media (max-width: 500px)

 NumSliderID = 'slider-id' /* Specify slider ID. */

 inputsW = 4em /* Set variables. */

 @import 'num-slider/css/src/main' /* Import styles. */

When setting options of paramsSVG please ensure that all values are properly balanced.

Changing the displayed number color on the hover event is intentionally disabled: clicking on a number is
actually clicking on slider SVG to produce a precise value, so it may be misleading. When clicking on the
designated number, the user will expect that this particular value will be selected and in this regard, we can
lose the ability to select values that are very close to displayed numbers.

When using Vue and applying its transition build-in component, it may not work as expected due to the self-
updating nature of NumSlider.attrs . In such cases wrap the slider component in div and apply transition on it,
like so:

<template>

 <transition name='fade' mode='out-in'>

 <div class='slider-wrapper' :key='sliderKey'>

 <NumSlider v-bind='options' model='model = $event' />

 </div>

 </transition>

</template>

<script setup>

 import { computed } from 'vue'

 /* ... some code ... */

 const sliderKey = computed(_ => ...)

 /* ... some code ... */

</script>

All icons live in the icons directory. To change existing ones, simply replace icon files.

Web version

Demo

@update:

7/7

https://webtool.one/en/num-slider/docs
https://webtool.one/en/num-slider

